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a b s t r a c t

Brain signals have recently been proposed as a strong biometric due to their characteristics such as, unique-
ness, permanence, universality, and confidentiality. There are many factors that affect the stability of EEG
signals as a biometric for example, using different recording devices, variation in participant emotional
states, performing different mental tasks and recording in temporally spaced sessions. Due to the non-
stationary nature of EEG signals, there are still speculations about the stability of using them for generating
auniqueand repeatable cryptographic key. The challenge that faces all biometric based crypto-systems is to
overcome the variation in biometric itself over time and to generate multiple unique keys from the same
observation. In this work, we investigate the stability of using EEG signals as a biometric for both personal
authentication and cryptographic key generation. The authentication process was tested using three data-
sets AMIGOS, DEAP, and SEED. Achieving accuracy of 96:23%;98:85%, and 99:89% respectively. The key
generation process generates a set of different keys with different lengths from the same observation.
Each key is unique and repeatable. The generated keyswere examinedusingNIST test suite, scale index test,
and autocorrelation test. Time complexity analysis of the key generation process was performed.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction (Shofiyah et al., 2022), and DNA (Zahid et al., 2019) contain unique
In the last few decades brain computer interface (BCI) became a
fast-growing and promising technology, which aims to allow
human brain to communicate with and control external devices.
BCI applications spreads across multiple and diverse fields includ-
ing e-healthcare (Ke et al., 2020; Vishwanath et al., 2021; Dahmani
et al., 2022; Kaushik et al., 2019), e-learning (Lin and Kao, 2018;
Abu-gellban et al., 2022), marketing (Kaheh et al., 2021; Amin
et al., 2020; Khurana et al., 2021), gaming (Giannakos et al.,
2019; Wan et al., 2021), human emotion analysis (Du et al.,
2022; Abdel-Ghaffar et al., 2022; Abdel-Ghaffar and Daoudi,
2020) and security (Zhang et al., 2021; Biradar et al., 2022). Con-
ventional biometrics such as face (Agrawal et al., 2021), iris
(Sonkar and Rani, 2021), fingerprint (Yin et al., 2021), voice
and repeatable identity information for each individual, but each of
them have it’s own limitation (Sudar et al., 2019).

EEG signals have recently been proposed as a promising bio-
metric approach. Thomas and Vinod in (Thomas and Vinod,
2016) studied person authentication from EEG signals during the
rest state with both eye open (EO) and eye close (EC) using sample
entropy and power spectral density, their system reached a gen-
uine accept rate (GAR) of 99:7% for EO, and 98:6% for EC in the beta
frequency band. Monsy in (Monsy, 2020) used frequency-weighted
power (FWP) which is an equivalent representation of the power in
a specific frequency band. The system was examined using two
EEG datasets recorder during the rest-state and achieved an equal
error rate (EER) of 0.0039 from EC resting state EEG signals. Biradar
et al. and Gui et al. in (Biradar et al., 2022; Gui et al., 2019) offered
an extensive survey on the use of brain signals for building biomet-
ric security systems. In crypto-systems, participants use secret
keys to protect their confidential data. Keys should be long, unique
and repeatable which make them very hard to generate and mem-
orize. Biometrics have been widely used in cryptographic key gen-
eration (Wang et al., 2020; Knutson et al., 2021).

Recently, generating cryptographic keys from brain waves was
introduced. Bajwa and Dantu in (Bajwa and Dantu, 2016)
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performed user authentication based on EEG signals, they used
energy bands obtained from discrete Fourier transform and dis-
crete wavelet transform. Their system was tested using two data-
sets achieving mean accuracy of 98:46% and 91:05%. For
performing neurokey generation, feature selection task was per-
formed using normalized thresholds and segmentation window
protocol. They generated a 230 bit key, and evaluated the strength
of their generated key using nine NIST tests. They concluded that,
different keys could be generated from different mental tasks.
Nguyen et a. in (Nguyen et al., 2017) used power spectral density
from different frequency bands as features. They used a random
initialization vector (IV) with a password for better protection for
users’ templates and to add more randomness for their generated
keys. They evaluated their method using the EEG Alcoholism and
GrazIIIa datasets, and found that their generated key has 99%
regeneration success rate. Their generated key was 192 bits and
they evaluated its strength using six NIST tests.

A common limitation that faces all biometric based crypto-
systems is that; biometrics are noisy in nature, as they are sensitive
to acquisition equipment’s, environmental conditions and varia-
tion in biometric itself over time. As, cryptographic keys needs to
be exact, any change in the biometric will cause variation in the
generated key. The challenge in all biometric based crypto-
systems is to overcome the variation in biometric itself over time
and to generate multiple unique keys from the same biometric
(Sudar et al., 2019).

The objective of this work is to design a stable EEG-based per-
sonal authentication and cryptographic key generation system that
overcomes the previous limitations and offers the following secu-
rity aspects;

� Prevents Biometric data leakage; The EEG data in its original
form is not stored in the system database. Information stored
in the user’s template if stolen, will neither allow an imposter
to be falsely accepted by the system nor it will help him in
regenerating the correct cryptographic key.

� Provides stable authentication and key generation processes;
Individual’s EEG samples taken in different times are almost
never identical. The system accuracy was found to be stable
when tested using different datasets having variation in data
collection procedure, number of participants, number of elec-
trodes, and number of recording sessions. System accuracy
was also stable when training and testing data are from the
same session or from different sessions that are temporally
spaced.

� Generate a set of unique keys that could be used in different
applications; From the same EEG observation the proposed sys-
tem generates a set of different keys with different lengths
without the need to perform any change in the system internal
structure. Each generated key is unique and repeatable.

� Generated keys are suitable to be used for cryptographic appli-
cations; The statistical properties of each generated Key were
tested using NIST test suite, its degree of non-periodicity were
examined using scale index text, and the correlation of the
key and a shifted version of itself was checked using autocorre-
lation test. The generated keys passed all the tests and are suit-
able to be used as cryptographic keys.

� Time complexity analysis of the key generation process is per-
formed showing that the key generation has linear complexity
and is fast enough for practical applications.

The rest of the paper is organized as follows; in Section 2 we
introduce the basic techniques used in building our system. Sec-
tion 3 gives an overview on the three datasets used for testing
our proposed system. In Section 4 we present our personal authen-
tication and cryptographic key generation methodology. In Sec-
2

tion 5 we summarize our results and analyze the security aspects
offered by our proposed system. In Section 6 we conclude our work.

2. Related techniques

In this section we introduce some of the basic techniques used
as building blocks in our proposed system.

2.1. Riemannian Geometry and the Manifold of SPD matrices

Recently, a series of techniques based on Riemannian geometry
has been used to build different BCI applications (Corsi et al., 2021;
Abdel-Ghaffar et al., 2022; Gupta et al., 2022). In this subsection we
introduce some basic properties regarding the space of symmetric
positive definite (SPD) matrices.

2.1.1. Manifold of SPD matrices: basic concepts
Let M Nð Þ ¼ M 2 RN�N� �

be the space of N � N square matrices,

while S Nð Þ ¼ S 2 M Nð Þ; ST ¼ S
n o

be the space in M Nð Þ of symmet-

ric N � N square matrices. P Nð Þ is an open subset of S Nð Þ where,
P Nð Þ ¼ P 2 S Nð Þ;uTPu > 0;8u 2 RN� �

. The space of P Nð Þ is the
space of SPD matrices.

2.1.2. Covariance matrix Estimation
In this work, we generate the covariance matrices which repre-

sent the relations between the EEG signals recorded from N elec-
trodes. Those covariance matrices are SPD matrices that forms a
smooth Riemannian manifold with a non-positive curvature in
the N N þ 1ð Þ=2 dimensional Euclidean space.

Let xk tð Þ be the time series recorded from each electrode,
k ¼ 1; . . . ;N . xk tð Þ is divided into m small windows. Let Wik refers
to each window separately, where i ¼ 1; . . . ;m and k ¼ 1; . . . ;N.Wik

is a vector containing n samples. Convolution is performed
between each window and the corresponding windows from the
N electrodes to generate m covariance matrices Ci; i ¼ 1; ::;m.

Let X 2 RN�n be the set of EEG signals recorded from N elec-
trodes and each having n samples. The covariance matrix
C 2 RN�N is a square matrix that can be calculated from X:

C ¼ 1
N � 1

XN
i¼1

xi � xð Þ xi � xð ÞT ð1Þ

where x ¼ 1
N

PN
i¼1xi

2.1.3. Riemannian distance
To measure the distance between two points A;B 2 P Nð Þ, we

measure the geodesic distance, which is the length of the unique
shortest path connecting the two points (Bhatia, 2009; Nielsen
and Bhatia, 2013):

d A;Bð Þ ¼ k log A
�1
2 BA

�1
2

� �
kF ¼

Xn
i¼1

log2ki

 !1=2

ð2Þ

where k � kF is the Frobenius norm, and ki; . . . ; kn are the eigenvalues

of A
�1
2 BA

�1
2

� �
.

2.1.4. Center of mass for a set of SPD Matrices
To describe the center of mass for a set of m points (A1; . . . ;Am)

on the SPD manifold we use the geometric mean, which is called
Karcher mean (Bini and Iannazzo, 2011; Nielsen and Bhatia,
2013) and it is defined as:

G A1; . . . ;Amð Þ ¼ argmin
A2P nð Þ

Xm
i¼1

d2 X;Aið Þ ð3Þ
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where d �; �ð Þ is the Riemannian distance defined in Eq. (2). The
unique point Xð Þ that represent the minimum in Eq. (3) is the geo-
metric mean and forms the solution for the matrix equation:

Xm
i¼1

log A
�1
2
i XA

�1
2
i

� �
¼ 0 ð4Þ

for m > 2 Eq. (4) does not have a closed-form solution, iterative
algorithms should be used (Rodrigues and Jutten, 2019; Congedo
et al., 2017).

2.1.5. Vectorization
The element ci;j in an N � N covariance matrix C 2 P Nð Þ indi-

cates the covariance value between the ith channel and the jth

channel.

C ¼
c1;1 � � � c1;N

..

. . .
. ..

.

cN;1 � � � cN;N

2
664

3
775 ð5Þ

Due to symmetry, the upper triangular part of C can be flattened

into an N Nþ1ð Þ
2 � 1

h i
column vector (Barachant et al., 2013):

VC ¼ c1;1;
ffiffiffi
2

p
c1;2; c2;2;

ffiffiffi
2

p
c1;3;

ffiffiffi
2

p
c2;3; c3;3; . . . ; cN;N

h i
ð6Þ

where, kCkF ¼ kVCk2. The equality of norm is preserved using theffiffiffi
2

p
coefficient applied on the non-diagonal elements.

2.2. Error correction code

In our proposed key generation algorithm the error correction
process is performed using Reed-Solomon (RS) coder. RS coder is
a systematic block coder that have the following properties
(Shrestha and Xu, 2011; Singh, 2013):

� RS coder works with multi-bit symbols, each symbol consists of
m bits.

� The message is divided into separate blocks of data (k symbols
each).

� It is described as RS n; kð Þ, where n 6 2m � 1.
� Parity protection information (2t symbols) is added to each
block to form a self-contained code word of n symbols. Fig. 1
shown RS code configurations.

� The code adds 2t parity symbols and is capable of correcting t
symbol errors where;
t ¼
n�k
2 ; for n� kð Þ even

n�k�1
2 ; for n� kð Þ odd

(
ð7Þ
� In RS code both the message and parity symbols are elements of
Galois field (GF), for coding m bit symbols, the GF has 2m ele-
ments (Shrestha and Xu, 2011).
Fig. 1. Reed-solomon c

3

One of the advantages of RS coder is that, it works with symbols
of m bits which makes RS particularly good when dealing with
bursts of errors because even if all them bits in a symbols is wrong,
this counts only as one error.

3. Data sets

Our proposed system is examined using three publicly available
datasets, AMIGOS, DEAP and SEED. Table 1, gives an overview for the
three datasets, and Fig. 2 shows the electrode positioning in each.

In AMIGOS dataset (Miranda-Correa et al., 2021) EEG and other
physiological signals were recorded. The dataset contains two
experiments one for individuals and the other for groups. In this
work we are using the individuals experiment in which EEG signals
were recorded from 40 participants watching 16 short emotional
videos. EEG signals were recorded using 14 electrodes placed
according to the 10–20 international positioning system (Jurcak
and Tsuzuki, 2007) at a sampling rate of 128 Hz. Each observation
(trial) is from 51 to 150 s according to the length of the stimuli
video used. In this work we limit each trial time to 51s, and we
excluded 6 participants (ID number 12, 21, 22, 23, 24, 33) with
invalid and corrupted data.

In the DEAP dataset (Koelstra et al., 2012) EEG and other phys-
iological signals of 32 participants were recorded while each of
them watching 40 one-minute musical videos. EEG signals were
recorded using 32 electrodes placed according to the 10–20 inter-
national positioning system at a sampling rate of 512 Hz. The DEAP
dataset is recorded in two sessions in the same day separated by a
lunch break (20 trials per session). DEAP has a pre-processed ver-
sion in which, the Electrooculography (EOG) artifacts were
removed, signals were down-sampled to 128 Hz, and filtered from
4 to 45 Hz. Each observation (trial) is 63s in which the first 3s are
baseline signals. In this work we use the pre-processed version of
DEAP and the first 3s were removed.

In the SEED dataset (Duan et al., 2013; Zheng and Lu, 2015) EEG
signals of 15 participants were recorded while each of themwatch-
ing 15 videos excerpts from Chinese movies. EEG signals were
recorded using 62 electrodes placed according to the 10–20 inter-
national positioning system (Jurcak and Tsuzuki, 2007) at a sam-
pling rate of 1000 Hz. The dataset was recorded during 3
sessions with an interval of approximately one week between ses-
sions (15 trials per session for each participant). In the pre-
processed version of SEED, signals were down-sampled to
200 Hz, and filtered from filter 0–75 Hz. Each observation (trial)
is from 185 to 265 s according to the length of the stimuli video
used. In this work we used the pre-processed version of SEED
and limit each trial time to 185s.

4. Methodology

In this section, we present our proposed personal authentica-
tion and cryptographic Key generation mechanism.
ode configuration.



Table 1
An overview on the AMIGOS, DEAP and SEED datasets.

Item AMIGOS DEAP SEED

Recording Device Emotiv Neuroheadset3 Biosemi ActiveII ESI NeuroScan
# of subjects 40 32 15
Subjects Description 27 males, 13 females 16 males, 16 females 7 males, 8 females
# of Electrodes 14 32 62
Sampling Rate 128 Hz Originally 512 Hz, down-sampled to 128 Hz Originally 1000 Hz, down-sampled to 200 Hz
Affective Stimuli Music Videos Music Videos Excerpts from movies
# of Recording Sessions One Two-sessions in the same day. Three sessions (approximately one week apart).
# of Trials per session 16 40 15
Trial Duration From 51s to 150s 63 s From 185s to 265s

E.A. Abdel-Ghaffar and M. Daoudi Journal of King Saud University – Computer and Information Sciences 35 (2023) 101541
4.1. Personal authentication

Personal authentication task is divided into two stages; the
enrollment stage and the verification stage.

4.1.1. The enrolment stage
During the enrolment stage, each user offers his claimed ID,

required cryptographic key length (in bits) and M trials (each trial
consists of N-channel EEG signals used for training the system).
The enrolment stage is illustrated in Fig. 3 and summarized in
the following steps:

1. In each training trial (observation) the EEG signals are
recorded from N electrodes. The signal from each electrode
is divided into m small windows. Covariance matrices are
generated from each set of windows, as explained in Sec-
tion 2.1.2. Since, the three datasets AMIGOS, DEAP and SEED
used to examine our system are mainly created to analyze
human emotions, and as the emotion hold time is from 1
to 8 s (Mohammadi et al., 2017; Thammasan et al., 2016).
We decided to work with a window size of 10s to avoid
the influence of participant affective state on the authentica-
tion and key generation processes.

2. As each participant offers M trials in the enrollment stage. The
geometric mean Ri for the set of covariance matrices in each
training trial Ti (where i ¼ 1; . . . ;M), is calculated as explained
in Section 2.1.4.

3. We use the set of geometric means R1; . . . ;RM , calculated in the
previous stage to generate a common center point for each par-
ticipant G, using Eq. 3.
Fig. 2. Electrode positioning (a) AMIGOS dataset 14 electrodes. (b) DEAP dataset 32 el
international positioning system.

4

4. To simplify key generation process, point G 2 RN�N is converted

into an N Nþ1ð Þ
2 � 1

h i
column vector VG as explained in section

(2.1.5).
5. The vector VG is quantized using a scalar quantizer in which the

quantization levels (threshold values) are determined using
multi-Otsu thresholding method (Liao et al., 2001). The output
from the quantizer consists of two parts; the first part QVG

which is the quantized values of VG that forms the input to
the RS encoder. The second part is the quantization thresholds
which is a L� 1 vector (where L is the number of quantization
levels). The quantization threshold is stored in the system data-
base as the first part of user’s template.

6. The quantized vector QVG forms the input to Reed-Solomon
encoder. The number of bits per symbol in QVG is 8 bits. The
Reed-Solomon encoder we used is RS(255,239) the parameters
of the RS coder is; m ¼ 8;n ¼ 255; k ¼ 239;2t ¼ 16. This coder
is capable of correcting 8 symbols. The Reed-Solomon error cor-
rection coder is explained in in Section 2.2 and the generated
code configuration is shown in Fig. 1. The symbols in QVG is
divided into blocks k symbols each. Let the number of symbols
in QVG be H symbols. if H=k is not integer, zeros are added at the
end of the last block to make all the blocks complete with k
symbols each. The output of the Reed-Solomon encoder is
divided into two parts; the first part is an H � k½ � matrix repre-
sents the coded symbols of QVG, this part is used to generate
the key. The second part is H � 2t½ � symbols which represents
the parity symbols, those parity symbols are flattened into a
H � 2t � 1½ � vector which is stored as the second part in the
user’s template.
ectrodes (c) SEED dataset 62 electrodes. Electrodes placed according to the 10–20



Fig. 3. Enrolment Stage. During the enrolment stage, each user offers his claimed ID, required cryptographic key length (in bits) and M trials (each trial consists of N-channel
EEG signals used for training the system). The quantization thresholds and the parity symbols are stored in user template in the system database. The generated key is used
for encryption.
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7. The H � k matrix represents the coded symbols output from the
RS encoder is flattened into H � kð Þ � 1½ � vector, and forms one of
the inputs to the key generation process (4.2).

4.1.2. The verification stage
During the verification stage, each user claims an identity and

offers an observation (N-channels EEG signals). Each user should
also determine the length of the required cryptographic key. The
verification stage is illustrated in Fig. 4 and summarized in the fol-
lowing steps.

1. The EEG signals are recorded from N electrodes. The signal
from each electrode is divided into 10s windows. Then, covari-
ance matrices are generated from each set of windows using
Eq. 1.

2. The geometric mean R for the set of covariance matrices G is
calculated using Eq. 3.

3. Point G is converted into an N Nþ1ð Þ
2 � 1

h i
column vector VG using

Eq. 6.
4. The vector VG is quantized using a scalar quantizer in which the

quantization levels (threshold values) are taken from the L� 1½ �
vector stored in the user’s claimed ID template.
5

5. The output from the quantizer QVG is reshaped to form an
H � K½ � matrix if H=k is not integer, zeros are added at the end
of the last block to make all the blocks complete with k symbols
each. The H � 2t � 1½ � parity vector stored in the user’s template
is also reshaped into H � 2t½ � matrix, the two matrices are hor-
izontally concatenated. Each raw is n symbols (n = 255) forms
the input to the RS decoder. The RS decoder is capable of cor-
recting t symbols in each raw. If the error result from RS deco-
der is zero the verification process is completed and the user is
genuine, other wise he is an imposter.

6. If the user is genuine, the key generation process (explained in
Section 4.2) is performed.

4.2. Key generation

The key generation process is performed using SHAKE-265
cryptographic hash function that requires two inputs;

� The H � k½ � matrix representing the coded symbols output from
the RS encoder after flattening it into H � kð Þ � 1½ � vector.

� The required key length in bits which is provided by the user
during both the enrollment and the verification stages.



Fig. 4. Verification Stage. During the verification stage, each user claims an identity and offers an observation (N-channels EEG signals), and determine the length of the
required cryptographic key. Quantization thresholds and parity symbols stored in the user template is used during the verification process. If the error result from RS encoder
is zero the verification process is completed and the user is genuine, other wise he is an imposter. If the user is genuine, the key generation process is performed and the result
key is used for decryption.
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SHAKE-265 is an extendable-output function (XOF) [(Dworkin,
2015; Sarker et al., 2020). The XOF share the same sponge con-
struction with SHA-3 hash functions (Bertoni et al., 2014). The
advantage of using XOF as key derivative function is that, the
length of the output can be chosen to meet the requirements of
individual applications. So, the user can generate different keys
with different lengths for each of his applications. Each of those
keys is unique and repeatable.
5. Results and discussion

To evaluate the stability of our proposed technique we per-
formed two experiments; in the first experiment training and test-
ing data are from the same session. In the second experiment
training and testing data are from different sessions. The first
experiment generates the following outcomes; AMIGOS, DEAP-
Case1, DEAP-Case2, SEED-Case1, and SEED-Case2. In AMIGOS,
DEAP-Case1, and SEED-Case1 we use the data from the same ses-
6

sion for both training and testing. In DEAP-case2 we collect the
data from each user two sessions and use it in both training and
testing processes. In SEED-Case2 we collect the data from each user
three sessions and use it in both training and testing processes. The
cross validation in this first experiment is performed by dividing
the data into 70% training and 30% testing and performing 5-
fold cross validation.

The second experiment is applied only on DEAP and SEED data-
sets, as they contain more than one session (Dataset description
section III). The second experiment generates the following out-
comes; DEAP-Case3, SEED-Case3, and SEED-Case4. In DEAP-Case3
we use the data from one session for training and the other session
for testing. In SEED-Case3 when we use data from two sessions for
training and data from the third sessions for testing. SEED-Case4
when we use data from one session for training and data from
the other two sessions for testing. The accuracy of our proposed
system is evaluated using; Genuine accept rate (GAR), false reject
rate (FRR), and false accept rate (FAR). The result from both the
two experiments is shown in Table 2. From which we can see that



Table 2
Results from the two experiments. Results from experiment 1 (Amigos, DEAP-Case1, DEAP-Case2, SEED-Case1, SEED-Case2. Results from experiment 2 (DEAP-Case3, SEED-Case3,
SEED-Case4.

AMIGOS DEAP SEED

Case1 Case2 Case3 Case1 Case2 Case3 Case4

GAR 96:23	 0:628 98:85	 0:588 98:63	 0:034 98:34	 0:043 99:89	 0:034 99:55	 0:056 99:31	 0:133 99:25	 0:083
FRR 3:772	 0:628 1:154	 0:588 1:37	 0:034 1:63	 0:043 0:114	 0:034 0:446	 0:066 0:694	 0:133 0:746	 0:083
FAR 0:039	 0:015 0:092	 0:042 0:063	 0:023 0:047	 0:021 0:104	 0:019 0:379	 0:026 0:229	 0:017 0:115	 0:047

Table 3
Comparison of the proposed system accuracy with other techniques in the literature.

Study Dataset Neuro-key Accuracy

(Monsy, 2020) PhysioNET - (109 subject, 64 electrodes, 4 tasks, 14 runs in
1 day).

No Using 20-electrodes HTER(0:0065), 64-electrodes HTER(0:00345)

BMIS Lab - (16 subjects, 64 electrodes, rest state, 1 session). No 20-electrode HTER(0:00915), 64-electrodes HTER(0:003)
(Thomas and

Vinod, 2016)
PhysioNET No EO-GAR(99:7%), EC-GAR(98:6%) in the beta band.

(Ashenaei et al.,
2022)

PhysioNET No Using 21- electrodes Same session GAR(99:48%). Different sessions
(EO-GAR(93:98%), EC-GAR(86:19%)).

Self-collected dataset- (21 subjects, 21 electrodes, rest
state-EC, 4 sessions in 1 day).

No Same session GAR(99:84%). Different sessions GAR(93:76%).

(Bajwa and
Dantu, 2016)

Keirn and Aunon dataset- (7 subjects, 6 electrodes, 5
mental tasks, 1 session).

230 bit GAR(98:46%).

Alcoholism- (120 subject, 64 electrode, 1 session). 230 bit Using 18 electrodes GAR(91:05%).
(Damaševicius

et al., 2018)
Self-collected database- (42 subjects, 17 electrodes, rest
state, 1 session).

Up to 400
bit.

EER(0:024), and TPR(99:74%)

(Nguyen et al.,
2017)

Alcoholism. 192 bit EER(0:079) in Gamma band.

GrazIIIa - (3 subjects, 60 electrodes, six sessions). 192 bit EER(0:0018) in Gamma band.
(Nguyen et al.,

2019)
GrazIIIa 256 bit Using 32 electrodes EER(0:4%) in Gamma band.

DEAP 256 bit EER(2:83%) in the Gamma band.
(Yang et al., 2017) Self-collected database - (10 subjects, 4 electrodes,

different tasks, 4 session in 1 week).
21 bits FAR(1:83%), ERR(1:875%).

Our System AMIGOS 128, 265,
512,. . .

GAR(96:23%), FAR(0:039%).

DEAP 128, 265,
512,. . .

Same session GAR(98:845%), FAR(0:092%). Different sessions GAR
(98:34%), FAR(0:043%).

SEED 128, 265,
512,. . .

Same session GAR(99:89%), FAR(0:104%). Different sessions GAR
(99:25%), FAR(0:115%).
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using different sessions for training and testing results in slight
reduction in GAR around (1%) while in (Ashenaei et al., 2022)
the reduction in GAR caused by using different sessions was
around 5% to 6%. The result of our proposed system is comparable
with other techniques that exist in literature. Table 3 shows a com-
parison between our result and others.
5.1. Key testing

For analysing the randomness of the generated keys and deter-
mine whether or not they are suitable to be used as cryptographic
keys. The generated keys were examined using NIST test suite,
scale index test, and autocorrelation test.

We used the NIST statistical test suite for the validation of ran-
dom numbers for cryptographic applications (AndrewRukhin et al.,
2010) to test the randomness of the generated cryptographic keys.
The p-value is the most important parameter in each NIST test as it
represents the measure of randomness for the tested sequence. If
p > 0:01, then the test is successful and the tested sequence is con-
sidered random. For performing NIST tests keys with length
1100000 bits were generated. Table 4 shows the the percentage
of keys successfully passed each of the fifteen NIST tests.

The scale index test is used to investigate the degree of non-
periodicity of the generated keys. Scale index test was first intro-
duced by (Benítez et al., 2010), several studies in the literature
used it to examine the periodicity of their generated cryptographic
7

keys (Kaya, 2020a; Kaya et al., 2021). The scale index value is
between zero and one, if the scale index of tested sequence is
one or near one it is considered non-periodic (Kaya, 2020b; Kaya
and Tuncer, 2019). To perform the scale index test we used R pack-
age wavScalogram (Bolós and Benítez, 2022). The average scale
index value for keys with different lengths is illustrated in Table 5.
All average scale index values are between 0.7168 and 0.8988
which indicates that the generated keys are non-periodic.

The autocorrelation test is concerned with the dependency
between numbers in a sequence, it is used to measure the relation
between current values and past values of the tested sequence, it
determines if their are any repetitive pattern of bits (Menezes
et al., 1996, Ch. 5). Eq. 8 shows the mathematical definition for
testing a sequence s having n bits (Tuncer and Kaya, 2018):

A mð Þ ¼
Xn�m�1

i¼0

si � siþm ð8Þ

where � is the XOR operation, m is the lag (1 6 m 6 bn=2c). Eq. 9
shows the relationship between 0 and 1s in a sequence.

X5 ¼ 2 A mð Þ � n�mð Þ=2½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p ð9Þ

for a ¼ 0:05, the tested sequence passes the autocorrelation test if
jX5j < 1:6449. The autocorrelation test is performed on all the



Table 4
NIST Test Results. The percentage of keys successfully passed the NIST tests.

Test type AMIGOS DEAP SEED

Frequency (Monobit) test 100 100 100
Frequency within a Block 100 100 100
Runs Test 100 100 100
Longest-Run-of-Ones in a Block 100 100 100
Binary Matrix Rank 100 100 100
Discrete Fourier Transform (Spectral)

test
91.17 93.8 93.3

Non-overlapping Template Matching 100 100 100
Overlapping Template Matching 100 100 100
Maurer’s ”Universal Statistical” 85.3 84.32 80
Linear Complexity 97.05 96.8 93.3
Serial 82.35/

85.23
84.4/
87.5

86.6/
88.8

Approximate Entropy 97.05 100 93.3
Cumulative Sums (Cusums) 100 100 100
Random Excursions 82.35 84.4 86.6
Random Excursions Variant 100 100 100

Table 5
Scale index Test Results. Average scale index values for keys with different lengths.

Key length AMIGOS DEAP SEED

128 0.82582 0.80684 0.8988
256 0.74245 0.74055 0.8239
512 0.77641 0.77489 0.7989
1024 0.72582 0.71684 0.8518

Table 6
Autocorrelation Test Results. The percentage of keys successfully passed the
Autocorrelation test (for different m values).

m AMIGOS DEAP SEED

16 91.18 93.55 90.32
32 97.05 96.8 93.55
64 97.06 87.5 95.55
128 87.35 86.375 91.12
256 97.06 90.63 92.12
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generated keys for different m values and the average success rate
is shown in Table 6.
5.2. Time complexity analysis

In this section we perform time complexity analysis for the key
generation process. The time cost is measured in the running envi-
Fig. 5. Time Complexity Analysis results. (a) A table contains key length in bits and k
between increasing key length and the time required for the key generation process.
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ronment: Intel(R) Core(TM) i7-6500U CPU, 16 GB RAM and
MATLAB 2021a software framework. Time cost is measured using
the CPU time. We generate the keys 100 times for each user in each
database and average the result time. Keys with 10 different length
from 128 bits to 65563 bits (27 to 216) where generated. Fig. 5
shows the time cost for key generation process. From which we
can see that the key generation is a linear process, which is justi-
fied as the key generation is performed using SHAKE-265 crypto-
graphic hash function which is linear with complexity O nþmð Þ
where n and m are the sizes of input and output respectively.
The hash function input is the reshaped QVG vector output from
the quantizer with size N � N þ 1ð Þ=2½ � where N is the number of
electrodes (Section 4.2). Since, AMIGOS dataset recorded from 14
electrodes, DEAP from 32 electrodes and SEED from 62 electrodes,
the input vector size for AMIGOS, DEAP, and SEED dataset are 105,
528, and 1953 samples respectively. Difference in input vector size
justifies the difference in time required for key generation that
appears clearly in Fig. 5b. The key generation time from AMIGOS
dataset is between 0.84 to 10.3 ms, for DEAP dataset between 1.8
to 11.6 ms, and for SEED dataset between 8 and 18.5 ms. For rea-
sonable key length the proposed key generation process is suitable
for practical applications.

5.3. Security analysis

Our proposed system offers several security aspects summa-
rized in the following points;

� The original user data is not stored in the system database, so
even if an imposter steal a genuine user template he will neither
be able to pass the authentication process nor regenerate the
cryptographic key.

� The quantization thresholds for each participant is stored in his
template in the system database. Since we used a scalar quan-
tizer in which the quantization levels are determined using
multi-Otsu thresholding method, each participant will have
his own quantization thresholds. This results in reducing the
FAR in our system.

� Also in the user template we stored the H � 2t½ � symbols which
represents the parity symbols results from the RS encoder. Stor-
ing user specific parity symbols gave us two benefits. First, it
increased the GAR as during the verification process the RS error
correction will focus all its t symbol correction capability on the
errors exist in the user’s new offered observation, which will
increase the GAR. Second, if an imposter offered his own obser-
vation concatenating the genuine user H � 2t½ � parity symbols
ey generation time in milliseconds. (b) A figure illustrating the linear relationship
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to the imposter quantizer output ( H � K½ �matrix) will reduce the
capability of the RS error corrector to recover the genuine user’s
vector which consequently results in reducing the FAR of our
proposed system.

� One of the major problems in generating cryptographic key
from biometrics is the limited capability of generating multiple
keys from the same users’ biometric template. In our proposed
system we used SHAKE-265 which shares the sponge construc-
tion with SHA-3 hash functions. This gave us the advantage of
generating different keys with different lengths from the same
users’ template without the need for performing any changes
inside the system.

� The statistical properties of each generated Key were tested
using NIST test suite, its degree of non-periodicity were exam-
ined using scale index text, and the correlation of the key and
a shifted version of itself was checked using autocorrelation
test. The generated keys passed all the tests and are suitable
to be used as cryptographic keys.

5.4. Limitations of the study

Although it has been validated that the proposed system offers
a stable personal authentication and cryptographic key generation
mechanism, there are some limitations that need to be addressed
in future work. First, the proposed method was examined using
only three datasets with maximum three sessions one week apart.
These results are limited, if the time separation between sessions
are wider (months or years), the system performance is unknown.
More experiments needs to be performed using datasets with lar-
ger number of sessions that are temporal separated over longer
periods of time. Second, in this work we used a window size of
10s to avoid the influence of participant affective state on the
authentication and key generation processes. Several studies
(Nguyen et al., 2018; Pham et al., 2015; Arnau-González et al.,
2021) concluded that emotions have significant impact on the per-
formance of EEG based authentication systems. Investigating the
influence of human emotional state on our proposed technique
needs to be performed.
6. Conclusion

In this work, we present a system for personal authentication
and cryptographic key generation based on EEG signals. The per-
sonal authentication process was performed using the raw EEG
data without feature extraction by generating covariance matrices
from the N-channel EEG signals and representing them as points
(SPD matrices) on a Riemannian manifold. Then geometric mean
was generated from each observation, followed by vectorization,
quantization, and error correction processes (Section 4). The raw
EEG data is not stored in the system database, even if an intruder
steals a genuine user template, he will neither be capable of pass-
ing the authentication process nor regenerating the cryptographic
key.

The personal authentication process was tested using three
publicly available datasets AMIGOS, DEAP and SEED. Obtaining a
GAR of 96:23%;98:85% and 99:89% respectively if the training
and testing data are from the same session, and 98:34% and
99:25% from the DEAP and SEED datasets when the training and
testing data are from different sessions (Section 5). The achieved
results are comparable to other techniques in the literature
(Table (3).

A set of different cryptographic keys with different lengths is
generated from each user sample, without the need for changing
any internal system configuration. The user just needs to specify
the required key length during both the enrollment and verifica-
9

tion processes. For testing the statistical properties of the gener-
ated keys, were tested using NIST test suite, scale index text, and
autocorrelation test. The generated keys passed all the tests and
are suitable to be used as cryptographic keys (Section 5.1). Time
complexity analysis of the key generation process is performed
showing that the key generation has linear complexity and is fast
enough for practical applications (Section 5.2).
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